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ABSTRACT

A network of people connected by directed ratings or trust
scores, and a model for propagating those trust scores, is a
fundamental building block in many of today’s most success-
ful e-commerce and recommendation systems. In eBay, such
a model of trust has significant influence on the price an item
may command. In Epinions (epinions.com), conclusions
drawn from the web of trust are linked to many behaviors
of the system, including decisions on items to which each
user is exposed. We develop a framework of trust propaga-
tion schemes, each of which may be appropriate in certain
circumstances, and evaluate the schemes on a large trust
network consisting of 800K trust scores expressed among
130K people. We show that a small number of expressed
trusts/distrust per individual allows us to predict reliably
trust between any two people in the system with high ac-
curacy: a quadratic increase in actionable information. Our
work appears to be the first to incorporate distrust in a
computational trust propagation setting.
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1. INTRODUCTION

The web increasingly impacts the processes used by in-
dividuals to express as well as discern preferences among
items. A user may turn to the web for information on
purchases such as digital cameras, songs, or movie tick-
ets; or for information on much higher impact acquisitions
such as houses, jobs, or even mates. As these decisions
and the underlying financial processes themselves migrate
to the web, there is growing economic motivation to spread
information—and sometimes disinformation—through the
web. Open standards and a low barrier to publication de-
mand novel mechanisms for validating information. Thus,
we see unscrupulous exploitations of the holes in the so-
cial fabric of the web: successful manipulation of stocks
by teenagers posting on investment boards under assumed
personas; posts by product marketers pretending to be cus-
tomers extolling the virtues of their product; online relation-
ships that turn sour when one partner uncovers dramatic
misinformation with respect to age or gender; link spam-
ming of search engines to simulate popularity; and so forth.

One commonly proposed solution to this problem is to
build and maintain a web of trust either in microcosm (as
for an individual web site) or in macrocosm (across the whole
web) that would allow users to express trust of other users,
and in return would apply the entire web of relationships and
trusts to help a user assess the likely quality of information
before acting on it. Through such a web of trust, a user can
develop an opinion of another user without prior interaction.
The goal of this paper is to propose and analyze algorithms
for implementing such a web of trust.

Such a network is a fundamental building block in many
of today’s most successful e-commerce and recommendation
systems. On eBay, for instance, a model of trust has signif-
icant influence on the price an item may command. While
on Epinions, conclusions drawn from the web of trust are
linked to many behaviors of the system, including decisions
on items to which each user is exposed.

1.1 Approaches to trust propagation

A natural approach to estimate the quality of a piece of
information is to aggregate the opinions of many users. But
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this approach suffers from the same concerns around dis-
information as the web at large: it is easy for a user or
coalition of users to adopt many personas and together ex-
press a large number of biased opinions. Instead, we wish to
ground our conclusions in trust relationships that have been
built and maintained over time, much as individuals do in
the real world. A user is much more likely to believe state-
ments from a trusted acquaintance than from a stranger.
And recursively, since a trusted acquaintance will also trust
the beliefs of her friends, trusts may propagate (with appro-
priate discounting) through the relationship network.

An approach centered on relationships of trust provides
two primary benefits. First, a user wishing to assess a large
number of reviews, judgments, or other pieces of informa-
tion on the web will benefit from the ability of a web of trust
to present a view of the data tailored to the individual user,
and mediated through the sources trusted by the user. And
second, users who are globally well-trusted may command
greater influence and higher prices for goods and services.
Such a system encourages individuals [4] to act in a trust-
worthy manner, placing positive pressure on the evolving
social constructs of the web. Indeed, social network theory
and economics have considered a variety of facets of this
general subject [1, 2, 3, 6, 25].

1.2 Introducing distrust

Recent work [14, 21] give a mathematical approach to the
propagation of trust, but does not extend to the case in
which users may also express distrust. However, experience
with real-world implemented trust systems such as Epinions
and EBay suggest that distrust is at least as important as
trust. In the absense of treatment of distrust in prior work,
it is unclear whether a trust score of 0 translates to distrust
or to ‘no opinion’; merely shifting all trust scores so that
no negative values remain will not address this fundamental
issue. Modeling distrust as negative trust raises a number
of challenges—both algorithmic and philosophical. For in-
stance, the principal eigenvector of the trust matrix need
no longer be real. Another challenge: what does it mean
to combine distrusts through successive people in a chain.
Perhaps issues like this have been barriers to modeling dis-
trust in trust propagation. One of the main contributions
of our paper is to rectify this situation. We devote signif-
icant effort to developing an understanding of appropriate
models for the propagation of distrust (Section 3.3.1 and
Section 3.4). One our findings is that even a small amount
of information about distrust can provide tangibly better
judgments about how much user ¢ should trust user j (than
information about trust alone). However, using distrust in-
formation requires care: the unscrupulous may hold hostage
the reputation of a reputable citizen of the web.

1.3 Summary of results

Typical webs of trust tend to be relatively “sparse”: virtu-
ally every user has expressed trust values for only a handful
other users. A fundamental problem is using such webs is
that of determining trust values for the majority of user pairs
for whom we have not explicitly received a trust rating.

Mechanisms for addressing this problem have been stud-
ied in economics, computer science and marketing, albeit
typically without a computational component. We present a
broad taxonomy of schemes for propagation of trust through
a network of relationships, and evaluate 81 such schemes

against a large collections of expressed trusts provided by
Epinions. To our knowledge, this is the first empirical study
on a large, real, deployed web of trust.

We rank different propagation mechanisms mostly from
the perspective of predictive accuracy, in the following sense:
at a high level, our experiments involve masking a portion
of the known trust ratings and predicting these from the re-
mainder. A large website will naturally have to make trade-
offs between accuracy and response time. The hope is that
a better understanding of what is correct will lead to better
approximations to accuracy.

The remainder of the paper proceeds as follows. Section 2
covers related work. Section 3 then describes our algorithms,
and the taxonomy of mechanisms that ties them together.
Section 4 covers the web of trust we analyze. In Section 5
we provide experimental results comparing the algorithms
and draw conclusions about the effectiveness of trust prop-
agation on real-world data.

2. RELATED WORK

A number of different disciplines have looked at various
issues related to trust, including the incremental value as-
signed by people to transacting with a trusted party and
how trust affects people’s beliefs and decision making.

Tversky and Kahneman [13] were the amongst the first to
study these phenomena in the context of decision making.
There is also a substantial body of work on understanding
trust in the field of political science ([9, 18, 23]). We draw
a number of useful lessons from these fields, especially in
assigning semantics to trust statements, but unfortunately,
that work is not computational in nature.

There has been considerable work concerning trust in com-
puter science, most of it focused in the area of security. For-
mal logical models [8, 10] have been used to in the context
of cryptography and authentication. PGP ([24]) was one
of first popular systems to explicitly use the term “Web of
Trust”, though it was not in the context of search or informa-
tion flows. We believe that the same kind of trust relations
between agents can be used for a much wider range of ap-
plications than just for belief in statements about identity.
Gladwell’s popular book “The Tipping Point” [11] studies
the way information flows are mediated by the networks of
people and their associated trust relations.

There has been substantial work in the business manage-
ment community on the value of trust. Ackerlof’s classic [1]
showed the importance of information regarding the quality
of a product (or service). Ackerlof showed how information,
i.e., knowledge about the trustworthiness of a seller, is vital
for the functioning of a market. Trust is an important aspect
of on-line communities. Armstrong and Hagel [2] posit the
importance of trust and community for on-line commerce.

Recently, due to the emergence of e-commerce, there has
been work in the area of developing computational models
of trust. Ba, et. al. [5] provide a game theoretic approach of
trust and conclude that in the presence of an authenticating
third party, most utilitarian course of action for a (market)
user is to behave honestly. There have been a number of
proposed models and empirical studies of the EBay trust
model [12, 16, 17, 20, 22, 19]. However, that line of work
has not considered models of propagating trust.

In the last few years, a number of researchers have started
looking at the problem of propagating trust through net-
works. Yu and Singh ([25]) propose a framework which, in
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contrast to our work, assumes symmetry and arbitrary tran-
sitivity. Kamvar, et. al. [14] consider trust propagation in a
peer-to-peer environment and provide an approach that is
close to ours, without the incorporation of distrust. In gen-
eral, most of the work on trust propagation has been inhib-
ited by the lack of empirical data. Very recently, Richardson,
et. al. [21] develop a “path-algebra” model of trust propa-
gation which is the closest to ours; moreover, like us, they
use data from Epinions to validate their algorithms. To
our knowledge, these are the only attempts at a compara-
tive analysis of different propagation algorithms based on
a real, large, data set. Moreover, none of the above al-
gorithms handle or even attempt to model distrust in any
manner.

3. ALGORITHMS

In this section we describe our framework for trust pre-
diction and develop algorithms in this framework.

3.1 The framework

First, we assume a universe of n users, each of which may
optionally express some level of trust and distrust for any
other user. These values can be viewed as a real-valued
matrix; however to keep our development clean we will in
fact partition its entries into two matrices, one for trust and
the other for distrust. We take T" to be the matriz of trusts;
ti; is the trust that user ¢ holds for user j. The values ¢;; are
assumed to lie between 0 and 1. Similarly, we take D to be
the matriz of distrusts, in which d;; again lies between 0 and
1. This formulation allows a user to express both trust and
distrust with respect to another user.! The main goal of our
work is to predict an unknown trust/distrust value between
any two users, using the entries available in the trust and
distrust matrices.

In the following, we will use M generically to represent
a matrix of beliefs, either trust, distrust, or a combination.
Since our trust propagation steps will (algebraically) be de-
rived from such belief matrices, we will represent propaga-
tion steps in terms of M as well.

3.2 Atomic propagation

We now consider a “basis set” of techniques by which the
system may infer that one user should trust or distrust an-
other. Consider a user ¢ € [n]. If we have concluded that 4
trusts j through some means, an atomic propagation will al-
low us to carry that conclusion one step further, concluding
that ¢ trusts someone related to j.

Each element of the basis set extends a conclusion (such as
the conclusion that i trusts j) by a constant-length sequence
of forward and backward steps in the graph of expressed
trusts. We require that any inference regarding trust should
be expressible as a combination of elements of this basis set.?

For example, if we have concluded that i trusts j, and
an entry in M indicates that j trusts k, then an atomic
propagation would allow us to infer that 7 trusts k; we refer
to this as direct propagation. This propagation is expressible

n our experiments, all entries are drawn from {0,1}, but
our algorithms do not require this.

2Generally, the basis elements may be any family of matrix
operations using M. We restrict ourselves to sequences of
forward and backward steps following non-zero entries of M
since these capture a general and natural set of propaga-
tions.

Figure 1: Example of basis elements: Direct prop-
agation and co-citation. The dotted lines indicate
trust propagation.

as the matrix M: given any matrix C in which C}; represents
current inferences about ¢’s trust of j, we can replace C'
with a new inference matrix C - M representing one step of
direct propagation. Thus, M is the operator that encodes
the direct propagation basis element, as shown in Figure 1.

Another candidate basis element is co-citation. For ex-
ample, suppose ¢1 trusts ji1 and j2, and i2 trusts j2. Under
co-citation, we would conclude that iz should also trust ji.
This basis element is expressed by the matrix MT - M, rep-
resenting a backward-forward step propagating i2’s trust of
Jj2 backward to i1, then forward to 71 (see Figure 1).

The atomic propagations we consider in this paper are de-
scribed in Figure 2. Let o = (a1, a2, a3, ) be a vector rep-

Direct propagation | M A trusts B, so trust(A)

propagates to B

Co-citation MTM | Atrusts B, C, so trust(B)
propagates to C'

Transpose trust M7T A trusts B, so trust(B)
propagates to A

Trust coupling MMT | A B trust C, so trust(A)

propagates to B

Figure 2: Atomic propagations.

resenting weights for combining our four atomic propagation
schemes. Then we can capture all the atomic propagations
into a single matrix Rys,o as follows:

Ry =M + oMM+ asMT + a,MM7T.

We now explore how those atomic propagations may be
chained together.

3.3 Propagation of trust and distrust

Our end goal is to produce a final matrix F' from which
we can read off the computed trust or distrust of any two
users. In the remainder of this section, we first propose two
techniques for computing F' from Rar.«. Next, we complete
the specification of how the original trust 7" and distrust D
matrices can be combined to give M. We then describe some
details of how the iteration itself is performed to capture two
distinct views of how distrust should propagate. Finally, we
describe some alternatives regarding how the final results
should be interpreted.
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3.3.1 Propagation of distrust

As described above, let Ras o be a matrix whose ijth entry
describes how trust should be discounted when it flows from
i to j via an atomic propagation step; if the entry is 0, then
trust does not flow in a an atomic step from i to j. Let k be
a positive integer and let P*®) be a matrix whose 4jth entry
represents the propagation from ¢ to j after k& applications
of the basis set. In other words, beginning with a belief
matrix M, we will arrive at a belief matrix MP®) after k
steps. Thus, the propagation of trust beyond the basis set
is expressed as a matrix powering operation.

We give three models to define M (the belief matrix) and
P® for the propagation of trust and distrust, given initial
trust and distrust matrices 7' and D respectively:

(1) TrusT ONLY: In this case, we ignore distrust com-
pletely. The defining matrices then become

M=T1, P® =Rk .

(2) ONE-STEP DISTRUST: Assume that when a user dis-
trusts somebody, they also discount all judgments made by
that person; thus, distrust propagates only a single step. In
this case, we have

M=T1, P® =Rk  .(T-D).

(3) PROPAGATED DISTRUST: Assume that trust and dis-
trust both propagate together, and that they can be treated
as two ends of a continuum. In this case, we take

M=T-D, P®=R}.,.

3.3.2 lterative propagation

We now wish to define F', the final matrix representing
the conclusions any user should draw about any other user,
based on the computed P®)s. From our definition, it is
clear that each P captures the propagation of trust or
distrust via “paths” of length k. In this setting, we present
two natural choices.

(1) EIGENVALUE PROPAGATION (EIG): Let K be a suit-
ably chosen (discussed later) integer. Then, in this model,
the final matrix F' is given by

F=p%.

(2) WEIGHTED LINEAR COMBINATIONS (WLC): Let «y be
a constant (that is smaller than the largest eigenvalue of
Rum,o) and let K be a suitably chosen integer. Under this
model, F' is given by

K
F=>"4"p®.
k=1

3.3.3 Rounding

Finally, the result values of F' must be interpreted as ei-
ther trust or distrust. While continuous-valued (rather than
discrete-valued) trusts are mathematically clean [21], we
work on the assumption that from the standpoint of usabil-
ity most real-world systems will in fact use discrete values at
which one user can rate another. While our mathematical
development (like previous work) has been in the contin-
uous domain, we now consider the (non-triviall) “round-
ing” problem of converting continuous belief values from

B e S S S S B i T
J
Figure 3: Prediction of j based on the majority of
labels of neighbors of i (+ means trust and - means

distrust) sorted by the trust scores. Here, the pre-
diction would be +.

an arbitrary range into discrete ones (such as +1). This
corresponds to applications that demand a Boolean yes/no
judgment to the question “Should i trust j7?” This is tan-
tamount to rounding the entries in matrix F' to either trust
or distrust. We discuss three ways this rounding can be
accomplished.

(1) GLOBAL ROUNDING: This rounding tries to align the
ratio of trust to distrust values in F' to that in the input
M. Consider the row vector F;. We judge that i trusts j if
and only if Fj; is within the top 7 fraction of entries of the
vector Fj;, under the standard < ordering. The threshold 7
is chosen based on the overall relative fractions of trust and
distrust in the (sparse) input.

(2) LocAL ROUNDING: Here, we take into account the
trust/distrust behavior of i. As before, we judge that 7 trusts
j if and only if Fj; is within the top 7 fraction of entries of
the vector Fj, under the standard < ordering. The threshold
7 is chosen based on the relative fraction of trust vs. distrust
judgments made by i.

(3) MAJORITY ROUNDING: The motivation behind this
rounding is to capture the local structure of the original
trust and distrust matrix. Consider the set J of users on
whom ¢ has expressed either trust or distrust. Think of J
as a set of labeled examples using which we are to predict
the label of a user j,7 ¢ J. We order J along with j ac-
cording to the entries F;;s where j' € JU{j}. At the end of
this, we have an ordered sequence of trust and distrust la-
bels with the unknown label for j embedded in the sequence
at a unique location (see Figure 3). We now predict label
of j to be that of the majority of the labels in the small-
est local neighborhood surrounding it where the majority is
well-defined.

More sophisticated notions of rounding are possible. No-
tice above that local rounding and majority rounding are
“j-centric”. A j-centric definition is possible in a similar
manner. Furthermore, our notion of majority rounding tries
to exploit clustering properties. It is possible to derive im-
proved rounding algorithms by using better one-dimensional
clustering algorithms.

Our results show that the rounding algorithm is of signif-
icant importance in the effectiveness of the system.

3.4 On the transitivity of distrust

It seems quite clear that if i trusts 7, and j trusts k, then
i should have a somewhat more positive view of k based
on this knowledge. In the realm of distrust, however, this
transitivity might not hold. Assume ¢ distrusts j, who dis-
trusts k. Perhaps 7 is expressing the view that j’s entire
value model is so misaligned with ¢’s that anyone j distrusts
is more likely to be trusted by i (“the enemy of your en-
emy is your friend.”) Alternately, however, perhaps ¢ has
concluded that j’s judgments are simply inferior to ¢’s own,
and j has concluded the same about k—in this case, ¢ should
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strongly distrust k (“don’t respect someone not respected
by someone you don’t respect”). We call the former notion
multiplicative and the latter additive distrust propagation.

This problem results because trust and distrust are com-
plex measures representing people’s multi-dimensional util-
ity functions, and we seek here to represent them as a single
value. Rather than propose that one answer is more likely
to be correct, one can define two corresponding algebraic
notions of distrust propagation that may be appropriate for
different applications. Notice that by virtue of matrix mul-
tiplication, all our earlier definitions implement the multi-
plicative notion, if we use the trust and distrust values per
se.

One way to implement the additive distrust notion in our
framework is by transforming the matrix M to M’ before
applying the iteration, as follows:

m/__ o exp(mij) mij ;é 0,
w10 otherwise.

4. EXPERIMENTAL DATA

We begin with a discussion of Epinions, the provider of
our data, and we cover the problems that motivated them
to develop and maintain a web of trust between individuals.
We then dig into the structure of the graph itself.

4.1 Epinions

Epinions (epinions.com) is a website where users can
write reviews about a variety of topics, ranging from con-
sumer durables (such as cars and toasters) to media objects
(such as music and movies) to colleges to vacation spots.
Given the large number of users (on the order of millions)
and the high rate of new reviews (on the order of thousands
a day), it is very important to have an automated mecha-
nism for selecting the best reviews for any given topic. A
complicating factor in many areas such as movies, music and
wines, where tastes are subjective, is that what counts as a
good review for one user might not be a useful review for
another person.

The reviewable objects are arranged in a taxonomy with
top level nodes corresponding to categories of objects (Elec-
tronics, Autos, Books, ...). Any user may contribute a re-
view on any object. In addition to a human readable piece
of text, each review also typically contains two to five rank-
ings, on various axes (e.g., usability, reliability, etc.) of the
object, typically on a scale of one to five. These axes are
a function of the kind of object. So, reliability may be an
axis for cameras but not for universities. Finally, the user
also has to provide an overall rank on a scale of 1-5 for the
object.

In addition to writing reviews, a user can also rate reviews
of other users on a scale of four ratings, ranging from very
useful to useless. Finally, a user can also indicate that s/he
‘trusts’ or ‘distrusts’ another user. Amazon, Slashdot and
some other websites also have similar concepts, though they
use different terminologies.

Most objects accumulate more reviews than any user can
read. Moreover, there is a wide variation in the quality of
reviews. Most users are only looking for the top three to five
reviews for any particular product. So, given a user and an
object, the system needs to identify the top N reviews for
that object, for that user.

Often, the user is not researching a particular product

(such as Fizko toaster model 4234) but is instead looking
at the page corresponding to the product category (such as
toasters or merlots under $10) and would like some recom-
mendations on which products in that category he should
look at. So, given a set of objects (each of which has a num-
ber of reviews) and a user, the system needs to identify the
top N (typically 5) products to recommend to that user. A
variation of this problem is one where we have to pick the
top few products to warn the user about (i.e., identify the
“lemons”).

Getting one’s reviews rated highly by a number of other
users, especially if these users are highly trusted, results in
these reviews getting more prominent positions. One com-
plicating aspect at Epinions is that reviewers are paid royal-
ties based on how many times their reviews were read. This
motivated many efforts to rig the system, i.e., introduce rat-
ings and trust statements which did not reflect on either the
content or the trustworthiness of the user. Distrust was in-
troduced into the system about 6 months after the initial
launch, in part to deal with this problem.

Judging by the popularity of the site and the high quality
of reviews that are selected, the web of trust seems to be an
important and successful mechanism, at least in the context
of Epinions.

4.2 Trust graph characteristics

The epinions web of trust may be viewed as a directed
graph; the data we obtained consists of 131829 nodes and
841372 edges, each labeled either trust or distrust. Of these
labeled edges, 85.29% are labeled trust; we interpret trust
to be the real value +1.0 and distrust to be -1.0.

We compute the indegree and outdegree distributions of
this directed graph, treating both the trust and distrust
edges alike (Figure 4). As in the case of many other statistics
on the web, these distributions suggest a power law of ex-
ponent —1.7. Interestingly, this is quite different from that
of various power laws that have been observed on the web,
where the exponent is generally below —2.0.

The graph also possesses a large strongly connected com-
ponent (SCC) with 41441 nodes; the second largest SCC
has just 15 nodes. The number of nodes not in the SCC
but pointing to it is 39888 and the number of nodes not in
the SCC, but pointed to by it is 30823. In other words, the
trust graph has a roughly symmetric bow tie structure [7],
which shows that the trust graph is well connected even if
we use the direction of the edges. If we were to treat the
edges as undirected, then we have a giant (weak) connected
component with 119130 nodes. We also note that the dis-
tributions and overall connectivity properties of the graph
are largely preserved even if we restrict our attention to the
subgraph induced by the trust edges only.

5. EXPERIMENTS

We now describe our experiments and their results. Based
on the algorithmic framework developed in Section 3, our
algorithms have the following parameters:

1. Propagation of Distrust (3 cases): Trust only, One-
step Distrust, or Propagated Distrust.

2. Tteration Method (3 cases): EIG iteration, WLC iter-
ation, v = 0.5, and WLC iteration, v = 0.9.

3. Rounding (3 cases): Global, Local, or Majority.
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4. Atomic Propagations (3 cases): Direct only (a = eq),
Co-citation only (o = e2), or Combined
(a = (0.4,0.4,0.1,0.1)).

These dimensions result in 3* = 81 experimental cate-
gories. (Experiments for the additive distrust model will be
presented in the final version of the paper.)

We seek to determine whether any particular algorithm
can correctly induce the trust or distrust that 7 holds for
j. Our method is the following. Given the trust graph
described above, we remove a single edge (i,7) from the
graph, and then ask each algorithm within our taxonomy
to guess whether i trusts j2. Note that even through the
matrices T and D are sparse, the final matrix F' is not.
Considering the dimensions of the matrices involved, it is
not feasible to do matrix—matrix multiplications to obtain
a matrix of trust scores for every pair of nodes. Instead,
we perform a Lanczos-style matrix operation in which, at
each step, we do only matrix-vector multiplications. At the
end of the matrix-vector multiplications, we obtain a vector
that contains the trust score of 7 for all users. Since all our
rounding methods use only this vector, we never need the
entire matrix.

We perform this trial on 3250 edges for each of 81 ex-
perimental categories, resulting in 263K total trust compu-
tations, and tabulate the results in Table 1. In this table,
€ denotes the prediction error of an algorithm and a given
rounding method: the fraction of incorrect predictions made
by the algorithm.

As noted earlier, trust edges in the graph outnumber the
distrust edges by a huge margin: 85 versus 15. Hence, a
naive algorithm that always predicts “trust” will incur an
error of only 15%. We nevertheless first report our results
for prediction on randomly masked edges in the graph, as
it reflects the underlying problem. However, to ensure that
our algorithms are not benefiting unduly from this bias, we
also take the largest balanced subset of the 3250 trial edges
such that half the edges are trust and the other half are
distrust. The size of this subset S is 996. We measure the
prediction error with respect to this subset and call it eg.
Note that the naive prediction error on S would be 50%.
Table 1 shows both values for each experimental category.

5.1 Results

From Table 1, we see that we achieve prediction errors as
low as 6.4% on the entire set of 3250 trials and error as low
as 14.7% on the subset S. This performance is achieved for
the one-step distrust propagation scheme with EIG iteration
and o = (0.4,0.4,0.1,0.1).

5.1.1 Basis elements

It was our expectation in undertaking these experiments
that direct propagation would be method of choice, and that
the other basis elements would perhaps in some limited cir-
cumstances provide value. However, the value of co-citation
has been proven for web pages by the success of the HITS al-
gorithm [15], so we included it and the other basis elements.

3We insist that i make a Boolean decision about j. This
is so that we can measure the efficacy of our algorithms
against real data and does not reflect an inadequacy of our
algorithm. In fact, as we mentioned earlier, our algorithms
operate in the continuous domain and rounding to trust or
distrust is the (non-trivial) final step.
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Iteration « Propagation Global round. | Local round. | Maj. round.
€ €s € €s € €s
Trust only 0.153 0.500 | 0.123 0.399 | 0.077 0.175
e1 | One-step distrust || 0.119 0.251 | 0.108 0.223 | 0.067 0.162
Prop. distrust 0.365 0.452 | 0.368 0.430 | 0.084 0.206
Trust only 0.1563 0.500 | 0.114 0.365 | 0.080 0.190
EIG e2 | One-step distrust || 0.097 0.259 | 0.087 0.234 | 0.066 0.159
Prop. distrust 0.149 0.380 | 0.121 0.279 | 0.080 0.187
Trust only 0.153 0.500 | 0.107 0.336 | 0.077 0.180
e* | One-step distrust || 0.096 0.253 | 0.086 0.220 | 0.064 0.147
Prop. distrust 0.110 0.284 | 0.101 0.238 | 0.079 0.180
Trust only 0.153 0.500 | 0.123 0.390 | 0.189 0.163
e1 | One-step distrust || 0.093 0.231 | 0.083 0.205 | 0.098 0.205
Prop. distrust 0.102 0.221 | 0.098 0.199 | 0.121 0.295
Trust only 0.153 0.500 | 0.113 0.354 | 0.074 0.174
WLC,v = 0.5 | e2 | One-step distrust || 0.088 0.254 | 0.080 0.231 | 0.093 0.187
Prop. distrust 0.126 0.336 | 0.100 0.252 | 0.076 0.177
Trust only 0.153  0.500 | 0.108 0.340 | 0.078 0.159
e* | One-step distrust || 0.086 0.247 | 0.076 0.217 | 0.092 0.190
Prop. distrust 0.087 0.237 | 0.079 0.203 | 0.074 0.162
Trust only 0.1563  0.500 | 0.123 0.391 | 0.132 0.152
e1 | One-step distrust || 0.102 0.241 | 0.092 0.216 | 0.069 0.171
Prop. distrust 0.111 0.238 | 0.106 0.211 | 0.101 0.227
Trust only 0.153 0.500 | 0.113 0.356 | 0.078 0.184
WLC,y=0.9 | e2 | One-step distrust || 0.092 0.260 | 0.082 0.235 | 0.071 0.173
Prop. distrust 0.134 0.355 | 0.106 0.261 | 0.078 0.188
Trust only 0.153 0.500 | 0.107 0.337 | 0.075 0.169
e* | One-step distrust || 0.091 0.253 | 0.082 0.222 | 0.072 0.171
Prop. distrust 0.091 0.254 | 0.081 0.209 | 0.078 0.177
Table 1: Prediction of various algorithms. Here, ¢* = (0.4,0.4,0.1,0.1), K = 20.

The results, shown in Figure 5, were quite surprising: prop-
agation based only on co-citation alone (basis vector ez in
the figure) performed quite well. Notice that in this model,
simple edge transitivity in the underlying trust graph does
not apply: just because ¢ trusts j and j trusts k, we can con-
clude nothing about i’s view of k. So it is quite surprising
that this method performs well. The fact that over all cases
in our large table, e is the best overall performer seems to
indicate that there is a certain amount of resilience to vari-
ations in the data by adopting many different mechanisms
to infer trust relationships. We recommend this scheme in
environments where it is affordable.

5.1.2 Incorporation of distrust

One-step distrust propagation is the best performer with
the EIG type of iteration for each of the nine cases (three
rounding methods and three basis vectors . We can con-
sistently recommend one-step distrust in this case. With
the WLC type of iteration, distrust is clearly helpful, but
depending on the basis vector «, either one-step or prop-
agated distrust may perform better, as shown in Figure 6.
The v = 0.9 case, which favors long paths, performs worse
for one-step distrust than the v = 0.5 case. For other dis-
trust models, though, the results are mixed. The most strik-
ing result of the figure is that direct propagation (the e;
case) is the only situation in which distrust actually hurts,
sometimes quite substantially; in all other cases we recom-
mend using one-step distrust as robust, effective, and easy
to compute. Direct propagation (a = e1) in tree-structured

DEIG
EIMNY 05
oMy 0.8

Figure 5: Results for different values of o, majority
rounding, against result score ¢gs.

www.manaraa.com



0.35
0.3 =
0.25
0.2
0.15 4
0.1+
0.05 4

0

mi5 m0s

Error

T |MD|T-0| T TID|T-0f T |TID|T-D

el

Figure 6: Results for the WLC iteration, v €
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Figure 7: Results for rounding using the best overall
settings for the EIG and the WLC iteration against
result score ¢g.

networks that have no self-loops and no short cycles may
result in local information having little impact on the trust
scores, which could be undesirable. Recall that the EIG
iteration does not introduce any “restart” probability; this
would be easy to add, and would result in an algorithm more
similar to the WLC iteration.

5.1.3 Rounding

The results for rounding are broken out in Figure 7. The
figure compares rounding algorithms for the best setting for
the EIG iteration (one-step distrust with o = e*) and the
best setting for the WLC iteration (propagated distrust,
v = 0.5, = €%). In all cases, majority clustering beats
local rounding, which in turn beats global rounding. To our
surprise, this part of the algorithm turned out to be quite
critical, both in getting good results, and in providing strong
performance across all the different cases. We recommend
using a decision method like majority rounding.

5.1.4 lIteration models

OTrust Only @ 1-Step Distrust OProp Distrust
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Figure 8: Results for all iteration methods with a =
e*, majority rounding, against result score €gs.

Figure 8 restricts attention to the generally best basis
vector (a = €*) and the best rounding method (majority
rounding), and compares results for EIG, and WLC with
v ={0.5,0.9}. The best results are attained with EIG with
one-step distrust. Generally, one-step distrust minimizes the
impact that a few dangerous trust scores might have, rela-
tive to propagated distrust; but as this case shows, it is not
always superior. Generally, both methods, and both settings
of 7y, seem to provide reasonable results; the correct choice
may depend on the particular application.

5.1.5 The effect of the number of iteratioRs,

The following table (Table 2) shows the effect of the num-
ber of iterations for three selected settings of parameters.
For trust only propagation with @ = e;, meaning only di-
rect propagation allowed, increasing the number of iterations
has a more dramatic effect on improving the prediction er-
ror than for other propagation methods. This is as expected
as direct propagation occurs along the directed edges of the
graph. In contrast, the other propagation methods, assisted
by a = e* = (0.4,0.4,0.1,0.1), do not enjoy similar dramatic
improvements with increasing the number of iterations. In
part, this is because the shortest path between most test
pairs has length 2, so longer iterations may fail to help.

6. CONCLUSIONS

Over the last few years, a number of ecommerce related
sites have made a trust network one of their cornerstones.
Propagation of trust is a fundamental problem that needs
to be solved in the context of such systems. In this pa-
per, we develop a formal framework of trust propagation
schemes, introducing the formal and computational treat-
ment of distrust propagation. We also develop a treatment
of “rounding” computed continuous-valued trusts to derive
the discrete values more common in applications. Each of
our methods may be appropriate in certain circumstances;
we evaluate the schemes on a large, real world, working trust
network from the Epinions web site. We show that a small
number of expressed trusts per individual allows the system
to predict trust between any two people in the system with
high accuracy. We show how distrust, rounding and other
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Iter. Trust only One-step distrust | Prop. distrust
a=e a=c¢e" a=e*
€ €s € €s € €s
1 0.120 0.300 | 0.096 0.209 0.080 0.209
2 0.189 0.216 | 0.086 0.197 0.082 0.191
3 0.177 0.184 | 0.088 0.203 0.074 0.184
4 0.157 0.153 | 0.091 0.206 0.084 0.188
5 0.150 0.156 | 0.086 0.200 0.082 0.197
6 0.141 0.153 | 0.086 0.203 0.080 0.197
7 0.135 0.156 | 0.082 0.197 0.081 0.194

Table 2: Effect of number of iterations on ¢ and es for cluster rounding. The iteration type is EIG with

v = 0.9 and the number of samples is 1000.

such phenomenon have significant effects on how trust is
propapated.
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